top of page

ShrinkCells: Localized and Sequential Shape-Changing Actuation of 3D-Printed Objects via Selective Heating (ACM UIST 2022)

The unique behaviors of thermoplastic polymers enable shape-changing interfaces made of 3D printed objects that do not require complex electronics integration. While existing techniques greatly rely on external heat applied globally on a 3D printed object to initiate all at once the shape-changing behavior (e.g., hot water, heat gun, oven), independent control of multiple parts of the object becomes nearly impossible. We introduce ShrinkCells, a set of shape-changing actuators that rely on localized heat to shrink or bend. This is achieved by combining the properties of two materials - conductive PLA is used to generate localized heat that selectively triggers the shrinking of a Shape Memory Polymer. The unique benefit of ShrinkCells is their capability of triggering simultaneous or sequential shape transformations for different geometries using a single power supply. The result is 3D printed rigid structures that actuate in sequence, avoiding self-collisions when unfolding. We contribute to the body of literature on 4D fabrication by a systematic investigation of selective heating with two different materials, the design and evaluation of the ShrinkCells shape-changing primitives, and applications demonstrating the usage of these actuators.

References

Kongpyung (Justin) Moon, Haeun Lee, Jeeeun Kim, and Andrea Bianchi. 2022. ShrinkCells: Localized and Sequential Shape-Changing Actuation of 3D-Printed Objects via Selective Heating. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (UIST ‘22 ). Association for Computing Machinery, New York, NY, USA, Article 86, 1–12. https://doi.org/10.1145/3526113.3545670

bottom of page